Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
نویسندگان
چکیده
منابع مشابه
Nonconforming finite element approximations of the Steklov eigenvalue problem
Article history: Received 27 November 2008 Received in revised form 27 March 2009 Accepted 22 April 2009 Available online 3 May 2009 MSC: 65N25 65N30 65N15
متن کاملExternal finite element approximations of eigenvalue problems
— The paper is devote d to the finit e element analysis of second order e Hipt ie eigenvalue problems in the case when the approximate domains Oh are not subdomains of the original domain fl a U. The considérations are restricted to piecewise linear approximations and in the case of eigenfunctions to simple eigenvalues. The optimum rates of convergence for hoth the approximate eigenvalues and t...
متن کاملA Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods
In this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This co...
متن کاملA posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of t...
متن کاملFinite Element Approximations of a Glaciology Problem
In this paper we study a model problem describing the movement of a glacier under Glen’s flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395– 406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (19...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 2013
ISSN: 0862-7940,1572-9109
DOI: 10.1007/s10492-013-0007-5